

AUTOMATIC COMPOSITION AND NOTATION IN NETWORK MUSIC

ENVIRONMENTS

Georg Hajdu
Hochschule für Musik und Theater Hamburg

Harvestehuder Weg 12
20148 Hamburg

Germany
hajdu@musikhochschule-hamburg.de

ABSTRACT

Using real-time notation in network music performance
environments adds novel dimensions to man-machine
interaction. After a 200-year history of algorithmic
composition and a 30-year history of network music
performance, a number of performance environments
have recently been developed which allow performers to
read music composed in real-time off a computer
monitor. In the pieces written for these environments, the
musicians are supposed to either improvise to abstract
graphical symbols and/or to sight-read the score in
standard music notation. Quintet.net—a network
performance environment conceived in 1999 and used
for several project involving Internet as well as local
network concerts—has built-in notation capabilities,
which makes the environment ideal for this type of
music. The search for an ideal notation format, for which
several known formats were compared, was an important
aspect during the development of the Conductor
component of Quintet.net—a component that reads and
streams parts to the Client and Listener components. In
real-time composition, these parts need to be generated
automatically. Therefore, different scenarios can be
envisaged, which are either automatic or interactive with
the players shaping the outcome of a piece by their
performance.

1. INTRODUCTION

In this paper, I will outline the principles for automatic
and interactive composition and its notation in network
music performance environments such as Quintet.net.
For this, I will first give a brief account of the history of
automatic composition as well as network music
performance. This will lead to an overview of current
practices and a closer look at Quintet.net with its built-in
notation capabilities as well as different aspects of music
notation. Three scenarios for automatic and interactive
composition in the framework of this environment will
be presented, before I conclude my paper with a brief
outlook on future developments.

2. HISTORY

Automatic composition has a long history that predates
the use of computers by at least two centuries. The use
of dice for the composition of short pieces such as the
“Würfelwalzer” (ascribed to W.A. Mozart) used to be a
popular occupation among music enthusiasts of the 18th

century. This interest receded in the romantic and early
modern eras just to resurface with renewed momentum
in the age of the digital computer. The first example of a
piece composed by a computer is the song “Push Berta.”
Using computers to compose music was an approach
that quickly found its way from the vernacular into more
serious music thanks to the work of Lejaren Hiller
(Ames 1987: 169-185). In Europe, Iannis Xenakis and
G.M. Koenig, and later Clarence Barlow, stood out as
the main representatives of automatic composition
(Barlow 1981). Their works had in common that the
required a lengthy and cumbersome transcription
process to manually turn the computer printouts into
music notation, i.e. the score. The availability of
sophisticated notation programs made it possible to also
automatize the last steps from algorithmic composition
to publishable music scores. With pieces such as “Las
Melisas” (1991) and “Servicio a Domicilio” (1991),
Roberto Morales (Morales 1992) was among the first
composers to implement a system (Escamol), which
among other things allowed him to export his
compositions to Leland Smith’s Score notation program,
a task that has become startlingly simple since the
advent of OpenMusic (aka Patchwork in the mid-
1990s).

Network music performance has a 30+-year history with
pioneering work by the “American League of Automatic
Music Composers.” In a typical setup, the members of
the network would use computers programmed
individually to react in well-defined ways to the inputs
from their fellow members. Hereby, the performance
didn’t rely on symbolic notation but much rather on the
preprogrammed reaction modes of the composers and
the intuitive reaction modes of their users (Gresham-
Lancaster 1998: 39-44). Since the late 1990s, two
Austrian composers Karlheinz Essl and Gerhard
Winkler as well as American composer Nick Didkovsky
started to employ real-time music notation in their
compositions. In 1994, Winkler (Winkler 2004) started
development of a Max-based environment, the
Realtime-Score, to present a mixture of different
graphical elements ranging from standard music
notation to animated GUI objects to the performers
reading the score off of individual computer monitors.
The computers are connected via MIDI to exchange
control information. Winkler, who expects the same
precision by the performers executing his scores as with

printed scores and parts, first applied his concept to a
composition named “KOMA” (1996).

In his piece “Champ d’Action” from 1998, Karlheinz
Essl (Essl 1998; Essl and Günther 1998) developed a
similar concept of real-time notation, which is also
based on Max. He forgoes the use of standard music
symbols and employs a reduced set of symbols for 8
different musical structures (points, planes, drone,
figures, solo, clouds, trills and repetitions) shaped by
four global parameters. The players see the notation on
their screens and react to it accordingly. The computers
are controlled by a main computer and are also
networked via MIDI. Triggers that alter the state of the
system can be sent by a conductor or by an external
source (e.g. the audience listening to an Internet stream
of the performance).

Nick Didkovsky is the co-author of JSML, a Java-based
derivative of the HMSL music programming language.
JMSL contains the JScore Notation Package (Didkovsky
and Burk 2004), a programmable music notation editor
(which since recently can also be accessed from inside
the Max/MSP programming environment). In his piece
“Zero Waste” he uses JMSL to “generate a score in
common music notation which is sight-read by the
performer” (Didkovsky 2004). The performer is first
presented with two measures of algorithmically
composed music, whose performance is recorded,
transcribed and re-presented to the musician. This leads
to an ever-changing loop in which the inaccuracies by
the sight-reading of the performer and the transcription
of the computer are not only taken into account but also
build the foundation of this clever concept piece.

3. QUINTET.NET

Quintet.net is an interactive network performance
environment consisting of four components (Client,
Server, Listener, Conductor) and one add-on (Viewer).
Since its inception in 1999, Quintet.net was used in
numerous projects ranging from an Internet opera to
local network performances (Hajdu 2005). The Hamburg
Network Composers’ Collective, a permanent laptop
ensemble dedicated to performances of pieces, ranging
from free improvisations to fixed compositions (Hajdu
2004), was founded in 2003. A considerable number of
pieces have been either transcribed or composed for
Quintet.net; a Composition Development Kit (CDK) was
added in 2003 to facilitate the creation of new
compositions. The CDK consists of several graphical
editors such as the Bank Editor, the Score Editor,
Condmaker and the Max timeline. The real-time notation
built into the environment allows the performers to view
their own playing as well as the parts sent by the
Conductor.
Quintet.net was conceived with real-time notation in
mind, as notation can be extraordinarily useful in
Internet performances when musicians are thousands of
miles apart from each other. The notation engine also
serves another goal: the realization of microtonal

compositions. The eighth-tone resolution allows both the
exploration and performance of non-standard tuning
such as the Bohlen-Pierce scale.

Notation in Quintet.net

Quintet.net handles two types of notation:
• Real-time notation of note events, referred to as

performance notation
• Notation of parts that are either pre-composed or

algorithmically generated in real time, referred to as
score notation.

Notation in Quintet.net is performed on 5 grand staves,
700 pixels in length and consisting of 70 slots for note
events. Small vertical lines demarcate the seven
measures. In performance notation, each measure
represents the time span of one second; note events are
displayed in space notation with quarter-note heads but
without stems, beams and further markings. Three levels
of dynamics are represented by colored note heads (red,
black and blue).
Score notation is more sophisticated and includes
different note heads with stems and beams (up to 32nd
note beams) as well as rests for rhythmic notation.
Markings can be added as formatted text.

 Essl Winkler Didko-
vsky

Hajdu

Nota-
tion

Gra-
phical

Graphi-
cal and
simple
music
notation

Advan-
ced
music
nota-
tion

Real-
time and
score
notation

Net-
work

MIDI MIDI N/A TCP/
UDP

Music Impro-
visation

Sight-
reading

Sight-
reading

Improvi-
sation ->
sight-
reading

Micro-
tonality

no no no yes

Exa-
mple

Champ
d’
Action
(1998)

KOMA
(1994)

Zero
Waste
(2002)

Mind-
Trip
(work in
progress)

Table 1. Comparison of several performance
environments with real-time notation

Compositions for Quintet.net

To perform a Quintet.net composition, a .cond file needs
to be loaded into the Conductor component, which
automatically brings up a timeline and an ensemble of
text files, called a score. The individual parts can be
either chosen manually by the conductor (the person
controlling the Conductor) or automatically from a
timeline.

In a real-time composition, parts are generated
automatically. Therefore, in addition to opening the
timeline, the Conductor loads an entire Max patch with a
separate control panel that allows the conductor to view
and control the state of the algorithmic process.

Notation formats

During the development of the Conductor, some
research on the usability of a notation format needed to
be carried out. The evaluation was based on three
criteria: Firstly, the composers should be able to use a
commercial music notation program to develop their
materials for Quintet.net (an import function hasn’t been
implemented yet, though). Secondly, the automatic
creation of parts was supposed to be as simple as
possible with as few intermediate steps
(formatting/parsing) as possible, and thirdly, it was
supposed to support notation of non-standard tunings.
For this, five different formats were compared to each
other (also see the appendix for a short example coded
in each format):

• OpenMusic

• MusicXML

• Enigma

• ABC

• Quintet.net notation format

OpenMusic

IRCAM’s Lisp-based OpenMusic (Assayag et al. 1997)
composition environment has several powerful music
editors, called factories, for microtonal and polyphonic
music notation. They require a hierarchical tree structure
to be sent to them. Several object classes exist to
facilitate the construction of properly formatted lists,
whose attributes are implicitly stated by the hierarchy of
parentheses (which, typical for Lisp, makes deciphering
the data rather difficult). The format would have
required major modifications if it were to be considered
for Internet streaming.

MusicXML

Recordare’s MusicXML is probably the most promising
notation exchange format developed to this date (Good
2001). As an extended markup language (XML) it is
ideal for Internet streaming and it possesses a large
repertoire of attributes, which are capable of describing
most types of musical with high accuracy. The large
amount of data typical for XML files require broader
bandwidth and processing power for the transcription of
data into drawing commands which may be a critical
resource in network music performance.

Enigma

Coda’s music notation program Finale uses a text-based
exchange format named Enigma. Enigma which has
developed over the course of 20 years is a convoluted
format, difficult to interpret (hence the name), but with

the advantage of its event list format being capable of
employing up to 16 different accidentals per scale step
for microtonal notation as well as its relative closeness
to drawing commands.

ABC

ABC was developed with basic notation capabilities for
medieval and folk tunes in mind (Walshaw). The
notation format is very explicit and easy to read. It lacks
serious support for microtones, though, which made it a
less likely candidate for Quintet.net.

Quintet.net

For what was required, developing a custom format thus
seemed the most viable compromise at the time. Due to
a lack of commercial editors, the Score_Editor was
created as part of the Quintet.net Composition
Development Kit.

Figure 1. The Score Editor is part of the Composition
Development Kit.

 Open-
Music

Music-
XML

ABC Enigma Quin-
tet.net

Com-
pact
code

yes no yes no yes

8th-note
notation

yes yes no yes yes

Attri-
butes

impli-
cit

explicit inter-
mediate

implicit inter-
medi-
ate

Close to
drawing
comm-
ands

inter-
medi-
ate

no inter-
mediate

yes yes

Table 2. Comparison of music notation formats
considered for the streaming of Quintet.net parts.

4. SCENARIOS

In the next chapter, I will describe three different
scenarios for which I want to employ the terms
scheduled vs. interactive real-time composition.

Scheduled real-time composition

In the last part of his life, John Cage wrote dozens of
number pieces which are characterized by an absence of
a global score and by individual parts in space notation.
Musical events are to be played within so-called “time
brackets.” As his composition Five (1988) was already
successfully adapted for and performed with Quintet.net,
it is only a small step towards the creation of a Five-style
real-time composition, whose outcome are determined
by the following parameters:

• Total duration of the piece
• Vertical and horizontal pitch organization
• Dynamic (initial dynamics and

cresc./decresc.)
• Articulation (legato or cesura)

The algorithm needs to ensure that the parts are being
sent out a few seconds before they are supposed to be
played.

In a recent piece for recorder and live electronics in 19-
tone equal temperament, I employed Clarence Barlow’s
indispensability formula (Barlow 1987) to generate the
pitch material for small and large loops, which are
characterized by a hierarchical, self-similar organization.
The formula was originally conceived to metric
hierarchies for complex meters with arbitrary numbers of
strata consisting of prime divisors. A Ligeti-esque
machine aesthetic à la Continuum characterizes the
resulting textures.
In a Quintet.net version for several instruments the
following parameters would to be manipulated in real-
time:

• Total duration and overall form
• Tempo
• Type of pattern
• Tuning and pitch filter
• Counterpoint
• Rhythmic structure (incl. rests)
• Dynamics
• Articulation

Interactive real-time composition

In this third scenario, the five players influence the
outcome of the composition interactively.

a. The five performers are prompted to
improvise over an initial pitch material

b. The performance is recorded and played
back by a random walk with aging. Of the
five voice only one is chosen in random
order

c. This voice is processed by a texture
generator implementing David Huron’s
principles of texture space (Huron 2001: 1

- 64) and the result projected onto the
individual computer screens.

d. The performers are prompted to play the
music on screen, and the process starts over
again from b. until the end of the piece is
reached.

 Figure 2: Real-time composition in Quintet.net can
either be automatic (above) or interactive (below).

Figure 3. In the “events & parts” display mode, the
parts for John Cage’s piece Five can be viewed at once.

5. OUTLOOK

Automatic and interactive real-time composition in
network music environments open up novel ways for the
exploration of man-machine interaction. The reliance on
music notation and subsequent sight-reading/improvi-
sation adds another dimension to interactive systems,
which usually emphasize a more direct form of non-
symbolic interaction. The system described in this paper
can be used both for performance with electronic
instruments in a wide-area network (WAN) or with
acoustic instruments in local networks.

6. REFERENCES

Ames, C. 1987. Automated Composition in Retrospect.
Leonardo, 20(2): p. 169-185.

Assayag, G., Agon, C., Fineberg J., Hanappe P. 1997.
An Object Oriented Visual Environment For Musical
Composition, Proceedings of the ICMC 97.

Barlow, C. 1981. Bus Journey to Parametron. Feedback
Papers 21-23.

Barlow, C. 1987. Two essays on theory. Computer
Music Journal 11: pp. 44-60.

Didkovsky, N. 2004. Recent compositions and
performance instrument realized in the Java Music
Specification Language. Proceedings from the 2004
International Computer Music Conference.

Didkovsky, N. and Burk, L.B. 2004. Java Music
Specification Language, an introduction and overview.
Proceedings from the 2004 International Computer
Music Conference.

Essl, K. and Günther, B. 1998. Realtime composition.
Musik diesseits der Schrift. Positionen.
Essl, K. 1998/2000. Champ d’Action. http://www.essl.at/

Good, M. 2001. MusicXML: An Internet-Friendly
Format for Sheet Music. 2001 XML Conference
Proceedings.

Gresham-Lancaster, S. 1998. The aesthetics and history
of the Hub: The effects of changing technology on
network computer music. Leonardo Music Journal 8:
pp. 39-44.

Hajdu, G. 2004. Composition and Improvisation on the
Net. Proceedings SMC’04 Conference, Paris.

Hajdu, G. 2005. Quintet.net: An environment for
composing and performing music on the Internet.
Leonardo Journal 38(1).

Huron, D. 2001. Tone and Voice: A Derivation of the
Rules of Voice-leading from Perceptual Principles.
Music Perception 19 (1): pp. 1-64.

Morales, R. 1992. Non Deterministic Automatons for
Composition, Proceedings International Computer
Music Conference: pp. 400-401

 Walshaw, C. abc standard V1.6. http://staffweb.cms.
gre.ac.uk/~c.walshaw/abc2mtex/abc.txt.

Winkler, G. 2004. The realtime-score. A missing link in
computer-music performance. SMC’04 Conference
Proceedings.

7. APPENDIX

A one-measure example was chosen and the underlying
code compared for different music notation formats:

OpenMusic

Various list have to be sent to the inputs of the VOICE
factory:

• Rhythm Tree: (5/8 (((5 8) ((5 (-1 2 1.0 1))))))
• Chords: (6000 7100)
• Tempo: 120
• Dynamics and other markings need to be

entered manually in the VOICE editor.

Enigma (only note entry pool):

^entries

^eE(1) 0 2 512 0 $81000800 128 0
^eE(2) 1 3 1024 -5 $C0000801 128 1
 0 $C0010000
^eE(3) 2 4 512 0 $C0000801 128 1
 0 $A0010000
^eE(4) 3 0 512 0 $C0000800 128 1
 96 $80010000

MusicXML

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE score-partwise PUBLIC "-
//Recordare//DTD MusicXML 1.0 Partwise//EN"
"http://www.musicxml.org/dtds/partwise.dtd">
<score-partwise>
<part-list>
 <score-part id="P1">
 <part-name>MusicXML Part</part-name>
</score-part>
 </part-list>
 <part id="P1">
 <measure number="1">
 <attributes>
 <divisions>8</divisions>
 <key>
 <fifths>0</fifths>
 <mode>major</mode>
 </key>
 <time>
 <beats>5</beats>
 <beat-type>8</beat-type>
 </time>
 <clef>
 <sign>G</sign>
 <line>2</line>
 </clef>
 </attributes>
 <sound tempo="120"/>
 <note>

 <rest/>
 <duration>4</duration>
 <voice>1</voice>
 <type>eighth</type>
 </note>
 <sound dynamics="54"/>
 <note relative-x="-2">
 <pitch>
 <step>C</step>
 <octave>4</octave>
 </pitch>
 <duration>8</duration>
 <tie type="start"/>
 <voice>1</voice>
 <type>quarter</type>
 <stem>up</stem>
 <notations>
 <tied type="start"/>
 <dynamics placement="below">
 <p/>
 </dynamics>
 </notations>
 </note>
 <direction placement="below">
 <direction-type>
 <wedge relative-y="-7" spread="0"

 type="crescendo"/>
 </direction-type>
 <offset>-6</offset>
 </direction>
 <note>
 <pitch>
 <step>C</step>
 <octave>4</octave>
 </pitch>
 <duration>4</duration>
 <tie type="stop"/>
 <voice>1</voice>
 <type>eighth</type>
 <stem>up</stem>
 <notations>
 <tied type="stop"/>
 </notations>
 </note>
 <direction>
 <direction-type>
 <wedge spread="15" type="stop"/>
 </direction-type>
 <offset>-1</offset>
 </direction>
 <sound dynamics="98"/>
 <note>
 <pitch>
 <step>B</step>
 <octave>4</octave>
 </pitch>
 <duration>4</duration>
 <voice>1</voice>
 <type>eighth</type>
 <stem>down</stem>

 <notations>
 <dynamics placement="below">
 <f/>
 </dynamics>
 </notations>
 </note>
 <barline location="right">
 <bar-style>light-heavy</bar-style>
 </barline>
 </measure>
 </part>
</score-partwise>

ABC

X:1
T:Example
M:5/8
K:C
"Quarter = 120" z2 C4- C2 B2 |]
w: p cresc. f

Quintet.net

1, text Times 14 8 36 0;
2, text Times 14 5 25 0;
3, A4 0 p er ^000000000 3.;
4, text Times 14 cresc. 61 4.8;
5, C4 0 p q- ^101000000 5.;
6, C4 0 p q ^101110000 7.;
7, B4 0 f q ^101000000 10.;

